
NPS55MT71Q11A

United States
Naval Postgraduate School

DDC

C

A COMPARISON OF TWO PERSONNEL PREDICTION MODELS

by

Kneale T. Marshall

January 1971

This document has been approved for public release and
sale; its distribution is unlimited.

Reoroducod by

NATIONAL TECHNICAL
INFORMATION SERVICE

-r0ng f . 1d . V o 2 2 15 1



0 ISULIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



-- .1

UNCLASSIFIED
8SWtuyt ansineusttion

DOCUMENT CONTROL DATA. - & D
(Setw~~~lo tlellele. itii. b.* of abstfree and indehing aaneleDOe mwat be mild whens lo. eveuU I. Al....iled

00111111014Tilde ACTIVITY (Co f author~) am& REPORT SECURITY CLASSIPICAYSON

A Comparison of Two Personnel Prediction Models

6. DESCRIPTIVE NOTERS (1IPP otet anpmiftmairellp dates)

Technical Report 1971
9. AU THORIISI (Pin6t MM.. Midge W~HO#ul heatnm

Marshall, lKneale T.

6, REPORT DATE 70. TOTAL NO. OP PAGES NO. orOPerEP

Januar 197 43 T
S.CONTRACT OR &RAANT QO. 91e. 00161MATOWB REPORT NUMCERISI11

NR047-096
6.PROJECT NO. NPS55!fr7101lA

6. Sb. OTNE RPORT NOWI (AOr ebaMWM dxISU =W be "@So"e

of. ONSTRIOUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited.

It. SUPPLEMENTARY NOTIES 12. SPONSORING MILITARY ACTIVITY

1S, AMISTRACT

Thi a paper describes, compares and contrasts two mathematical
models of personnel movement through a hierarchical organization. The
first model is a Markov chain type which is described in detail in
other literature. The emphasis in thi. paper is on a cohort model
based on people's lifetime behavior in the system. Data from student
enrollments is used in comparing the models, and predictions are made
and compared with actual numbers.

9#1 ~ ~ ~ ~ (P~ of `1f)IWW. A84



UNCLASSIFIED
S~wu~ty C~tiwton

LINK A LINK a LINK C

NO WOmos EOi WT ROLE WT ROLE WT

Manpower

Personnel

Prediction

Markov Chains

Cohort Models

Retention

DD ,'o*V?"..1473 • UNCLASSIFIED
Security Classification



NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. McNitt, USN M. U. Clauser
Superintendent Provost

ABSTRACT:

This paper describes, compares and contrasts two mathe-
matical models of personnel movement through a hierarchical
organization. The first model is a Markov chain type which
is described in detail in other literature. The emphasis in
this paper is on a cohort model based on people' lifetime
behavior in the system. Data from student enrollments is
used in comparing the models, and predictions are made and
compared with actual numbers.

This research was supported in part by the Office of Naval
Research under contract task number NR. 047-096, by the Office of
Institutional Research, University of California, Berkeley, and the
Ford Foundation.

Kneale T. Marshall'
Associate Professor

3 .rasting, rman jic E. Menneken
,Department o' ations Analysis Dean of Research Admifiistration

NPS55MT71011A

January 1971



TABLE OF CONTENTS

Page
I Introduction 1

II The Markov Model 3

III A Cohort Model 5
IV Model Comparison 

11

V Enrollment Forecasts 
22

Appendix 
25

References 
27



I. Introduction.

The purpose of this paper is to describe, compare and contrast

two mathematical models used to describe movement of personnel through

a hierarchical organization.

The first model, which has received considerable attention in

the literature (for example, see Bartholomew (1967), Gani (1963),

Thonstad (1968)) assumes an underlying stationary Markov chain structure.

The important point of this type of model is that it uses crosssectional

data of an organization in a given time period, and predicts what will

be the composition of the organization (i.e., the cross section) in the

following time period(s). A major advantage of such a method is that

it requires little data.

The second model considered here is of the cohort type. This

model follows each group of newly entering people, called a cohort, over

their lifetimes in the organization. Cross sectional structure in any

time period is found by considering the super-position of the remaining

members of all the previously entering cohorts. Although more appealing

from a theoretical viewpoint, this model typically requires considerably

more data than the Markov model.

The Markov model is described briefly in section II and the Cohort

model in detail in section III. In section IV an attempt is made to

compare theoretically the two models. Under certain conditions the

models give essentially the same results. The results of the analysis

show that under stationary conditions the Markov method gives a good

approximation to the movement through an organization, and since its

data requirements are small such a model may be preferred. However,
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for organizations with changing or controlled cohort sizes the fractions

which appear in the Narkov method should be changed from year to year

and the model gives no functional relationship of the model parameters

to the sizes of the cohorts. In the cohort method the parameters appear

as functions of the cohort sizes, and so in non-stationary situations,

the cohort method may be preferred for long range forecasting.

In section V some enrollment predictions are made, using both

the Markov chain and Cohort Models, of student enrollments at the

University of California, Berkeley. These are compared with actual

enrollments.
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II. The Markov Model.

The Markov chain model has been discussed in detail in the liter-

ature (for example, see Bartholomew (1967), Gani (1963), Marshall et al

(1970)), but to unify notation, and for completeness and clarity we

formulate it here. Throughout the paper we assume a system made up of

n active states.

At each time period it is assumed that people can stay in the

same grade, can move to other grades, or can leave the system. New

inputs are added to the continuing or promoted people in each grade.

Possible movement is shown schematically in figure 1 for 3 grades.

Let X i(t) be the number in grade i at time t, i E P, and

let X(t) be a row vector (X1(t),..... n(t)), where ICI n. Let

E m[X(t)] be the vector of expected numbers in each rank at t + 1,

given the vecto- X(t). Then

E [X(t)] - X(t)Q(t) + y(t+l), (1)m

where

qll.(t),ql2 (t),..... qln(t)

q 21(t),

(2)Q(t)

q nl (t),q n2 (t),....,q nn(t)

and

y(t) - (yl (t) .... y Yn (0).
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The vector y(t+l) is a vector of new inputs into each grade

at time period (t+l), i.e., yi(t+l) = number new people who enter

grade i at t + 1. The matrix Q(t) has the structure of the tran-

sient part of a Markov chain matrix, and qij(t) is the fraction of

those in i at t who will move to j at t + 1.

The main advantage of this model is that only a small amount of

data is required to estimate the coefficients; only the grade of each

person in the last two time periods is required.

Although the name "Markov-Chain" method gives the connotation

of a stochastic model, in most instances this model is treated in the

literature in terms of expected values only, and hence can be considered

to be deterministic. However, using the probabilistic interpretation

of the Markov chain, it is assumed that the probability a person is

promoted to state J, given he is now in i, is independent of how

long he has been in i, or how he got into i. This seems an unreason-

able assumption. in section III we formulate a "cohort" model of

movement through a system of grades which is based on more reasonable

assumptions. In section IV we compare the two models.
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=[0 :0
All new input at t + 1 into grade ., yl(t+l) > 0, Y2(t) = Y3(t) - 0.

All new input at t + 2 into grade 2, y2 (t+2) > 0, yl(t) = Y3 (t) - 0.

Grade 
III

Gae III .3 °/

.3

Grade II

.4A

New

Grade I

t t+1 t+2

Period

Figure 1: Illustration of Markov Chain Model w, h 3 grades.

I so I ii I II 
ImI
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Il. A Cohort Model.

People who enter into a system in the same grade and in the same

time period are referred to as a cohort. For example, all freshmen

entering a given university in a particular academic quarter, or all

officers entering into the U.S. Navy as Ensigns with regular commission

in a given fiscal year would be considered in each case to form a cohort.

After some time the people in a given cohort will be found in

various grades in the system, and some will have left. We can think

of the people in a given grade at some time as coming from many previously

entering cohorts. Indeed, everyone in the system entered in some cohort.

The cross-sectional structure in a given time period can be thought of

as the result of the superposition of the remnants of all previously

entering cohorts. Figure 2 gives a schematic representation of the f
cohort model.

Let there be n different typesof cohorts which enter the system.

For example, students can enter a university as freshmen, sophomores,

juniors, or seniors. Let yi(u) be the number who enter in cohort i

at time u. Let k index the people in a given cohort. Thus define

Z(k (u,t) = 1 if person k of cohort i whichij

entered at u is in j at t,

= 0 otherwise,

for k - 1,2,... ,yi(u).

We shall assume that all cohorts behave independently of eaci

other and that all members of a given cohort have independent behavior.

)ut) ((k) (ut),... z(k) (u,t)), k - 1, 2 ,...,yi(u). ThusLe Zkut) (il (ut 'in ' '
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I yr ••
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Figure 2: Illustration of Cohort Model with 3 grades.



we have a set of yi(u) independent and identically distributed

n-dimensional vectors.

Now let

Pij(ut)=PrZ (k) (u,t) 1], (3)

and

P(u,t) = [pij(u,t)],

the n x n matrix. Then

EZ(k)E[ k(u,t)] - (Pil(u't) .... Pin(U't)).

Since we are interested in relating the positions of people in

consecutive time periods, define the 2n-vector

[Z()(')Z(k) (k) (k))

"k) [,(u,t),...,Z (u, t) ,z() (u,t+l),... z(k) (u,t+l)]."il in ' " in

Let X ij(u,t) be the number of people in j at t who entered in i

at u. Also let [Xi(ut),Xi(u,t+l)] be the 2n-vector of Xij(uit),

X (u,t+l), j - 1,2,...,n. Then

Yi(u) (k) (k)
[Xi (ut) ,Xi (u,t+l)] = I [Zi (ut),Z1  (ult+l)]. (4)

k=l

From our assumptions this vector is the sum of y.(u) independent

and identically distributed vectors, and thus for large cohort sizes

the [Xi(u,t),Xi(u,t+l)], i = 1,2,...,n, u < t, are each approximately

normally distributed (see for example, chapter 4 of Anderson (1958)).

We shall assume that cohorts are large enough for normality assumptions

to hold.
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Let X Ct) be the number in grade j at time t and let

X(t) - (X 1Ct),...,X n(t)). Then

n
(X(t),X(t+l)] I [X i (ut),X i(u,t+l)J + [O'y~t+l)1, (5)

r.~t i-1

where y(t+l) is the n-vector of new inputs at t + 1, and 0 is an

n-vector of zeros. Again we have a sum of independent random vectors

They are not identically distributed, but if each is approximately

normal, then the 2n-vector [X(t),X(t+l)] has a multivariate normal

distribution. In terms of the original Z vector random variables,

[X~t),~t~ln =i U)n (k) (ut,(k)
1Xt)Xt u)1=It i[Z k i (t)Zi (u,t+l)] + jO,y(t+l)]. (6)

In forecasting, what we need is the conditional expectation

E[X(t+l)IX(t)]. It is well known that (see Anderson (1958), chapter 2)

for the multivariate normal distribution,

E[X(t+l)IX(t)] - E[X(t+l)] + [X(t) - E[X(t)]]B(t)- C(t), (7)

where B(t) is the n x n covariance matrix of elements of X(t),

and C(t) is the n x n covariance matrix of elements of X(t) with

corresponding elements of X(t+l).

To compare this result with equation (1) we let E[X(t+l)jX(t)]

Ec (X(t)], and write (7) as

EcIX(t)] - X(t)B- (tCMt

+ y(t+l) + [EiX(t+l)]- y(t+l) - E[X(t)]B- (t)C(t)]. (8)
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Equation (8) has the same linear structure as (1), but the coeffi-

cients appear to be quite different from those of the Markov chain

model. We explore this further in section IV. However, we shall need

to know the structure of B(t) and C(t) in more detail, and now find

them in terms of the cohort sizes and the underlying probability distri-

butions.

Structure of B(t).

Recall that B(t) is the covariance matrix of the elements of

X(t). Thus bij(t) - Cov[Xi(t),X (t)] where Xi(t) is the number in

state i at time t. From (6) we have

Cov[X(t),X(t+l)] = I I Cov[(Z n (ut)Z (u,t+l)],
ujt i-i k-i

The expression for B(t) in terms of the original probability distri-

butions is given in equation (9). Note that B(t) is symmetric with

off diagonal terms negative and diagonal terms positive. Now define

11 (t) - E[X (t)], the expected number in state j at time t. Then
Jn
I( = = •lYi(u)Pij(u,t). Let M(t) be the diagonal matrix with

u.%t il

diagonal elements pi (t). Also define Y(u) to be an n x n diagonal

matrix with diagonal elements yi(u). With these definitions (9)

simplifies considerably and we have

B(t) = M(t) - I P(u,t)T Y(u)P(u,t), (10)

where T denotes transpose and the P matrices are given by (3).
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Struc ture. ofI C_(- .

Earlier we defined C(t) to be the covarianca matrix of elements

of X(t) with those of X(t+l). Thus cj (t) = Cov[X.(t),X (t+l)].

Define the joint distribution

pr(k)ut ik)
7 ijz(u,t) = PIZi)(u,t) = 1,Z (k) (u,t+l) = lb

all k = 1,.... ,Yi(u). Then

n
c.,(t) = Y Z Yi(u)[Iiji(u,t) - pii(u,t)piz(u,t+l)]. (11)

urt i=l

Let Xj (t) be the expected number of people who move from grade j

at t to grade Z at t + 1, and let A(t) = [kj (t)], an n x n

matrix. Then from (11) and the definition of A

C(t) = A(t) - P(u,t)Ty(u)P(u,t+l). (12)
u't
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IV. Mode-l Conia arison.

In this section we compare the two estimators E and E for
m c

the Markov and Cohort models respectively. Taking the stochastic

interpretation of the Markov model we see that

qjk(t) = t/j(t). (13)

Thus from (1) we have

E X(t)'M- (t)A(t) + y(t+l). (14)
m

For the cohort model, from (7) we have

E• X(t)B- l(t)C(t) + y(t+l) + [w(t+l) - y(t+l) - p(t)B-1(t.C(t] I

n
Now ::(t+l) X . .(t) + vy(t+l), and assume that we can pick

..=i

y (t+l) so that P i(t+l) = P.(t) for all j. Then

n A..(t)

i i (t) + y

or

LI(t) - y(t+]) = uJtQWt) (16)

Using (16) together with (14) and (15) we find that

E - E = [p(t) - X(t)i[B- (t)C(t) - Q(t)0 (17)m c

Equation (17) is useful in comparing the two models. If in some

period t the actual distribution of personnel coincides with the

expected distribution, the models will give the same forecasts for

period t + I. "On average" the difference between the two models'

forecasts will be zero but for a given period the difference will depend

on the size of IB- (t)C(t) - Q(t)].
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tsing (12) we can write

C(t) = "I(t) - F(t), (18)

where we have .et

F(L) - '(u,L)T y(u)P(u,t+l)"

U-'t

Similarly, from (1(0)

B(L) = .N(t) - G;(t) , (19)

whr c

G(t) Y P(u,t)T Y(u)P(u,t).
t, t

Using (18) and (19) with (13) we find that

5-1 (t)C(t) - Q(t)] = B- (r)[G(t)Q(t) - F(t)]. (20)

Now if motion through the system is Markovian (possibly non-

t. ationarv) , then

P(u,t+l) = P(u,t)Q(t),

,ind the expression in (20) is zero. This shows the expected result that

it motion ttirough a ý,raded s'.'stem is truly Markovian then the cohert

oAL)del and Mfarkov chain model give identical forecasts.

Since movement between grades is typically non-Markovian, we wish

to invest igate further the error given by (17). We shall do this by

1.,,)in: tiriehor it (;(t)Q(t-) - F(L) for :nome special cases.
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Single Grade Case.

Let us consider the case where we have:

Al. The system has a single grade (n=l),

A2. At each time period all input cohorts are the same (y(t)=y),

A3. The life distribution of each person in the system is stationary.

With these assumption' the models and their corresponding nota-

tion simplify considerably. No subscripts are required on the distri-

bution p, and if L(u) is the lifetime in the system of a person

entering at u, then

Pr[L(u) > t - u] = p(u,t)

= p(t-u) under A3.

If y is the constant cohort size for u z t (we cannot claim y(t+l) = y

and that (17) holds simultaneously), then

G = [ yp(t-u) 2 , M = yp(t-u).
u~t u•t.

A = £ yp(t+l-u), F(t) = ) yp(t-u)p(t+l-u).
urt u"t

All these are independent of t.

Now let k f E[L] I [ p(t-u). Then
u~t

GQ - F p(u)2 p(u+l) - p(u+l)p(u) p(u). (21)
0 u-0 u-0 u0

The term in parenthesis in (21) is

I p(u) 2 (i-l) - I p(u)p(a+l) - Z I A(u+l)p(u) - [ p(u) 2 , (22)
uwh uO uO l)

where A(u+l) - P[L =u + 1] - p(u) - p(u+l).
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Interpreting p(u) as the tail distribution of a non-negative

random variable, one can show that

I p(u)[l-p(u)] = M AIu) A p(v), (23)
uko uý_O v~tu

and

I [A(u) + A(u+l)]p(u) = 1. (24)
uko

Using (22), (23) and (24) in (21) gives

GQ - F = I A(u)V p(v) - (9,)p(u•. u(25)

Let us assume now that the expected remaining lifetime of a person

whose time in the system exceeds u time periods is no more than the

expected lifetime 9 of a new input. We say that people have "mean

residual life" bounded above by the original mean life, and say that

L has MRLA if

I p(v) g Z, all u -0,1,2,... for which p(u) > 0.

2 p(u)

Note that equaliLy holds in this equation for the geometric distribution.

Table 1 shows that in a particular case of students attending the

University of California at Berkeley, this assumption is valid.

Under the MRLA assumption, from (25) we see that

GQ - F c 0. (26)

Recall that

E - E - - X(t)]B- (GQ - F]. (27)m c
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Since B-1 is non-negative, we have the following conclusion under

the above four assumptions:

If in addition to Al - A3 we assume L has MRLA,

a) If X(t) < P, then E g E and the Markov model under-estimatesm c

the value of E[X(t+l)IX(t)],

b) If X(t) > p, then E Z E , and the Markov model over-estimatesm c

the value of E[X(t+l) X(t)].

TABLE 1: Mean Residual Life of Freshmen Students Entering

U.C. Berkeley in Fall Semester, 1955.

Lifetime >
(semesters) Pr(I > up(u)/P(v).=p(u) pu) p)pv.

u v:u v2U

0 1.000 6.959 6.96
1 0.972 5.959 6.14
2 0.905 4.987 5.52
3 0.756 4.082 5.4Z
4 0.684 3.326 4.86
5 0.593 2.642 4.47
6 0.562 2.049 3.65
7 •."24 1.487 2.84
8 0.49d .936 1.88
9 0.199 .465 2.34

10 0.130 .266 2.05
11 P )5 0 .136 2.72
12 0.036 .086 2.39
13 0.017 .050 2.94
14 0.015 .033 2.20
15 0.011 .018 1.64
16 0.007 .007 1.00

Source data found in Suslow et al (1968), [5].

Since X(t) has a margin-." normal distribution we can say more

about the expected error in the one dimensional case. (E m-E ) is a

normal random variable with zero mean, and variance equal to B I(GQ-F) 2
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(where these are all scalars). Thus we can say that with probability

about .95 the error (Em-Ec) will lie in the interval (-2 B-l/21GQ - F1,

+2 B-1/ 2IGQ - Fl). The length of this interval is a function of the

1/2cohort size y, and increases as y . The expected value of X(t),

p, increases as y. Thus the interval length divided by p, or the

1/2fractional error range, decreases as y . So as y increases, and

hence U increases, the wilth of the confidence interval of error

increases much more slowly. To illustrate this we use the lifetime

distribution from table 1, and for various cohort sizes we show how the

interval length changes. The results are given in table 2. It is clear

from this table that even though the lifetime distribution differs

considerably from a Markovian (geometric) distribution with the same

mean, the confidence intervals on E - E are extremely small relativem c

to the expected number in system, p. For comparison p(u) is drawn

in figure 3 together with a geometric distribution.

TABLE 2: 95% Confidence Intervals for E - Em c

for various Cohort Sizes.

*

Cohort Size E[X] ConfidenceInterval for
y "i E -E

m c

1000 6,959 (-7,7)

2000 13,918 (-10,10)

3000 20,877 (-12,12)

4000 27,836 (-14,14)

Based on lifetime distribution in table 1.
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Figure 3: Comparison of p(u) for UCB Students with a geometric distribution.
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Multigrade System.

Let us now relax assuwptioiý Al, but keep the assumptions A2

and A3 of constant cohort sizes and stationary distributions reipec-

tively. Let Y be the diagonal matrix of cohort sizes at each time

period. Define L - I P(u), where P(t-u) - P(u,t). Under such
u•O

stationary conditions P(t) - p independent of t, and if y is

the n-vector of cohort sizes, then from expected value arguments

S= p - y.

Thus

S= y(I-Q) and also

y I P(u)
U20

"y L.

Since these relationships hold for all y, L - I , and finally

Q - i - C-1. (27)

Using (27) with the definitions of G and F, we have that

GQ - F - I P(u)Ty(P(u)(I-L-) - P(u+l)1. (28)

u-O

Recall from (17) and (20) that

E - E - [p - X(t)]B [GQ - F].m c

It is easy to show that B- is non-negative, but the conditions under

which E > E , or conditions for this inequality to hold for somem c
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element i are much more cumplex than in the single state case. Let

A(u+l) - P(u) - P(u+l). Then the multi-dimensional equivalents of

(23) and (24) are

[ [I- P(u)T]Y(u)P(u)= • A(u)T I Y(v)P(v), (29)
u•O u•O v:u

and

X [P(u)T Yt(u+l) + AM(u)T Yp(u)] = Y. (30)
u>O

Note that (30) only holds for Y a stationary matrix, whereas in (29)

Y(u) can change over time.

Using (29) and (30) in (28) gives as the multidimensional equiva-

lent of (25),

GQ- F = I &(u)TY[ I P(v)L- - P(u)]. (31)
u>O v2u

Although this equation has great similarity to (25) it is quite different.

Even if one can say something about the sign of I P(v)L-I - NO,
vku

it is usually true that A(u) is not non-negative, as in

the single dimensional case. Also of course the elements of [P - X(t)]

can differ in sign, so that the conditions for each element of Em - Ec

to be either negative or positive do not seem simple or natural.

Equation (28) seems to be the most useful for computation purposes.

Note that (Em-EE) has a multivariate normal distribution with mean 0

and covariance matrix (GQ-F) T(B ) T(GQ-F). Using the data given in the

appendix for freshmen, sophomores, juniors and seniors at the University

of California, Berkeley 1955-1969, some calculations were made assuming

constant cohort sizes of 3000 freshmen, 700 sophomores, 1300 juniors
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and 150 seniors entering each fall semester. These figures are approxi-

mately what the Berkeley campus has been experiencing in its fall new

admissions.

Table 3 gives the matrix B, whose (i,j)th element is the

covariance of X (t) and X (t) for some t. Also included is p,

the vector of expected values of numbers in each state.

TABLE 3: Covariance Matrix B for the 4-state example.

State j
Fresh Soph Jun Sen

State i ____________ _______

Fresh 673 -454 -30 -10

Soph -454 1453 -380 -43

Jun -30 -380 2137 -535

Sen -10 -43 -535 2216

Expected 3868 3324 4687 3227
Values

The variance of the number in each state increases as the state

increases, and all states are negatively correlated.

Table 4 gives the matrix (GQ-F) TB- (GQ-F), which is the covar-

iance matrix of the error (E -E ). It can be seen that these numbers

are very small compared to the size of the predicted values, as was

found in the single state case.
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TABLE 4: Covariance Matrix of E - E
m c

tatej
Fresh Soph Jun Sen

State i

Fresh 6.7 2.2 -22.4 -5.4

Soph 2.2 1.0 -8.5 -2.7

Jun -22.4 -8.5 82.2 29.5

Sen -5.4 -2.7 29.5 41.8

The matrix B-1 (GQ-F) is given in table 5.

TABLE 5: B-1 (GQ-F) for the 4-state example.

tate j
Fresh Soph Jun Sen

State i
Fresh .068 -. 041 0.290 .040

Soph .033 -. 003 -. 062 -. 046

Jun .002 .003 -. 030 -. 125

Sen .001 .001 .029 .032

This is an example of where (GQ-F) is neither k nor 9 0,

unlike the single state case.

Even though movement through the system is far from that repre-

sented by a stationary Markov Chain, (i.e., N(u) 0 Pu for some P),

when constant cohort sizes are used the Markov Chain Model gives

essentially the same prediction as the more complex cohort model.
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However, the Cohort Model was primarily formulated for forecasting

under conditions of controlled input. This is the situation when academic

planning is implemented, and under such conditions the sizes of cohorts

in successive time periods can and do vary considerably. For example, the

freshmen cohorts in the fall quarters at Berkeley in the period 1966-1969

are shown in table 6. This was a period when total campus enrollment was

controlled, and new students entered only to fill available room.

TABLE 6: Freshmen Cohort Sizes at U.C. Berkeley

Date Cohort Size

Fall 1966 3,053

Fall 1967 3,308:

Fall 1968 2,239

Fall 1969 1,883

One can see from equation (13), since X(t) and P(t) are both

functions of previous cohort sizes (up to period t), that the Markov chain

transition probabilities will change with time, and that estimating them

from cross-sectional data in two consecutive years will not account for

changes in cohort sizes. In the next section we make forecasts one year

ahead with both models and compare the results.
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V Enrollment Forecasts.

in this section we use data up to the spring quarter of 1970 at

Berkeley to forecast continuing and returning undergraduate students at

the freshman, sophomore, junior and senior levels, in the fall quarter

of 1970. Both the Cohort and Markov Chain models are used, and results

compared with actual enrollments.

In applying the Cohort Model directly, three problems appeared,

all associated with the start-up and operation of the quarter system at

Berkeley.

The first winter and summer quarters were offered in 1967. The

fractions of students who entered in these quarters and were enrclled in

F69 (this notation will be used in this section. F69 means fall quarter

1969) are now applied to cohorts entering in the winter and summer of 1968

when forecasting for F70. It would certainly be expected that some students

frclu the winter and suimer quarters of 1967 would also be enrolled in F70,

but how many? We have no fractions for winter or summer 1966. These

fractions have to be estimated in some reasonable way. An average was

taken of the fractions from F65 and Sp66, for the winter quarter-and fro

Sp6 6 and F66 for the summer quarter.

The third problem that arose was in deciding what fractions to apply

to the students who entered in Su69. These students had available only the

winter and spring quarters of 1970 before F70. The students who entered

in Su68 could attend winter, spring and sumner quarters before F69. It was

felt that larger, fractions of Su69 entrants would attend the fall of 1970

than the fractions of Su68 students attending F69. But how much larger?
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To estimate attendance of Su69 entrants it was assumed that the same

fraction of these would attend F69 as did Su68 entrants in F68. Of these

that enrolled in F69, they were then assumed to behave in the same way as

new entrants in F69.

Besides these three particular and rather confusing problems, the

stationarity of most of the fractions since the start of the summer quarter

can be questioned. With such a major change in campus operations it will

take a number of years to settle down even if there were no changes between

3-quarter and 4-quarter operations.

The Markov Chain Model was used in the following way. The transition

matrix from F68-F69 was determined by finding the fractions of those en-

rolled in each grade in F68 who were enrolled in each grade in F69. This

matrix is shown in table 7.

TABLE 7: Markov Chain Matrix for F68-F69 at Berkeley

F69
Fr. So. Ju. Se.

Fr. .162 .551 .066 .001

68So. .105 .640 .035

Ju. .178 .481

Se. .152

If this is applied to F69 enrollments, the prediction for F70 will

have ignored new inputs in W70 and Sp70 (the summer quarter 1970 was not

held). To make a fair comparison the same fractions of these were assumed

to enroll in F70 as was assumed in the Cohort Model.
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Table 8 shows the forecasts from the two models together with the

actual figures. It can be seen that the cohort model gave significantly

better predictions that the Markov Chain method. This is not surprising,

since these forecasts are made for a period of much instability on the

Berkeley campus, both in student behavior and in academic policy.

TABLE 8: Enrollment forecasts for Fall 1970 at Berkeley,
Continuing and Returning Students

Freshman Sophomore Junior Senior Total

Markov Chain
Model 958 2,737 4,356 4,189 12,240

Cohort Model 1,115 3,018 4,508 4,670 13,311

Actual 1,591 3,136 4,632 4,261 13,620
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APPENDIX

Data used in calculations in table 3. The time periods u are

in years. The data is from many different cohorts, and each number is

the fraction of a particular cohort who were enrolled at U. C. Barkeley

in the given class in the fall quarter of 1969. Let:

State 1: Freshmen

State 2: Sophomores

State 3: Juniors

State 4: Seniors.

Example:

P13 (3)- fraction of students who entered as freshmen

in Fall 1966 who registered as Juniors in

Fall 1969. (0.281).

Time u P(u) y(u)TE l0 0 01 1883
0 1 0 0 258

0
o 0 1 0 817

0 0 48

. 2 5 4  .584 .009 2239

.IV .622 .039 542
.265 .493 1366

.395 124
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Time u P(u) y(u)T

12 .210 .454 .001 3303

.013 .189 .337 843

.138 .192 1662

.046 175

p007 .027 .281 .31" 3053

.003 ..o22 .130 733

3 .003 .042 1418

L .o2J9 205

04 .008 .033 .157 2579

.003 .005 .031 390

. 005 .008 1042

.016 125

F003 .003 .009 .03AT 3427

.003 .010 602

5 .001 .003 1442

L AN 202

"F003 .003 .004 ,o1f 3620

.001 .004 .007 728

6 .001 .003 1569

L 0 j 199

All numbers are rounded off to 3 figures. For more detail see

Marshall and Suslow (1971).
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